
USENIX Association

Proceedings of the
XFree86 Technical Conference

Oakland, California, USA
November 8–9, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

XSETTINGS : A protocol for cross-toolkit settings

OwenTaylor
RedHat, Inc.

otaylor@redhat.com

Abstract

Advancingtheuserexperienceon theopen-source
desktopdependsuponcreatingstandardsfor appli-
cationsto interactwith eachotherandthedesktop
environmentso that applicationscreatedwith dif-
ferent toolkits operatecorrectlywith any desktop.
The XSETTINGS protocol provides a simple ex-
ampleof someof thetechniquesandconsiderations
thatcomeinto play for suchstandards.It provides
amechanismfor all applicationsrunningonadesk-
top to have accessto a commonsetof settingsfor
suchuser-configurableparametersas double-click
timeandbackgroundcolor.

1 Introduction

Much of thefunctionalityof a desktopdependson
communicationsbetweenapplicationson thedesk-
top. For a long time, theonly standardsherewere
only theonesdescribedin theX Inter-client Com-
municationConventionsManual [ICCCM]. Over
the last several years, specificationshave been
developed for various additional areasof inter-
client communication. For example, version 2.0
of the GTK+ library addsto the ICCCM proto-
cols, and the Xdnd drag and drop specification
[XDMD] that weresupportedin version1.2, sup-
port for anextendedwindow managerhintsspecifi-
cation[EWMH], theXEMBED protocolfor inter-
applicationembeddingand the XSETTINGS pro-
tocol for basicdesktopsettings[XSETTINGS].

In thispaper, we’ll takeadetailedlookattheXSET-
TINGS protocol. The purposeof XSETTINGSis
to allow coordinationof userconfigurationsettings
betweenapplications.With full XSETTINGSsup-
port, when a settingsuchas double-clicktime or

backgroundcolor is changedin a desktopconfigu-
rationdialogtool, it affectsall applicationsrunning
on that X display, no matterwhat widget toolkit
they areusing(or evenif they arewritten usingthe
X librariesdirectlywithoutusingany toolkit atall).

To make achieving this goalmorefeasible,XSET-
TINGS is restrictedto a narrow set of configura-
tion settings: desktop-wideuser-configurableop-
tionsthatareexpectedto besharedbetweentoolk-
its. It is not intendedfor applicationspecificset-
tingsor configurationdoneaspartof developingan
application.

Thetraditionalmechanismusedfor all sortsof con-
figurationfor X appswastheXrm database[XRM].
Xrm is not restrictedin its scope– it is meantto
be usedfor desktopwide andapplicationsettings;
for usersettingsandfor developersettings.How-
ever, comparedto otherconfigurationdatabasesys-
temsout there(suchasGConf[PENNINGTON] or
ACAP [RFC2244]), it hasa numberof limitations,
for example:

� Poorsupportfor writing configurationkeysby
applicationsor graphicalconfigurationtools.

� No easynotificationonchangedsettings.

� No abstraction of different configuration
databasebackends.

For theseand other reasons,Xrm is not usedon
moderndesktopssuchasGNOMEandKDE. How-
ever, westill needto havesomewayof sharingcon-
figurationsettingsbetweendifferent toolkits. One
methodof achieving suchsharedsettingswould be
to designa full configurationdatabasethat every-
body could use. However, this would be a huge
project and therewould be significantbarriersto

adoption:it would requiremigrationof large code
basesfrom existing systemsto the new configu-
ration system,and the divergenceof development
environmentsbetweendifferentprojects(different
languages,differentbaselibraries)leavesunattrac-
tivelow-level interfacesastheonly onesthatcanbe
shared.

XSETTINGS takes a different approach. Instead
of trying to replaceexisting configurationsystems
with apowerful replacement,it providesacommon
mechanismfor applicationsrunning on an X dis-
play to accessconfigurationsettingswithout car-
ing what the backenddatabaseis. Configuration
of settingsis done through the native configura-
tion systemfor the desktopenvironment,then the
thesettingsarepresentedto applicationsvia XSET-
TINGS.

For XSETTINGSto achieve acceptancein this role
it hasto meetanumberof requirements:

� Efficiency.

� Simplicity. It should be easy to imple-
ment conformant applicationsand toolkits,
andshouldnot requirelibrariesbeyond what
is commonlydeployed.

� Good facilities for changenotification. It
shouldnot benecessaryto restartapplications
for settingsto take effect.

� Ability to have per-displayandper-screenset-
tings. Thesamesettingsmaynot make sense
onevery X displaythatauseris using.

2 Tools

The most basic questionwhen designingXSET-
TINGSwaswhatto usefor acommunicationmech-
anism. Simple configurationdatabases(gnome-
config,kde-config,libproplist),oftenwork by stor-
ing text files in the user’s homedirectory, remov-
ing the needfor any communicationmechanism
with aconfigurationserver. However, thisapproach
doesn’t allow for changenotification,or per-display
settings,soit won’t work for ourpurposes.It is also
problematicto storefiles on disk when we might

want to be mirroring the GNOME configuration
databaseononedisplayandtheKDE configuration
databasefor thesameuserloggedin on a different
display.

Anothersimpleapproachis to storetheconfigura-
tion informationin a propertyon the root window.
Propertiesarean X mechanismfor allowing arbi-
trary datato be associatedwith a window; simply
putting the configurationdataon a propertyof the
root window with a predefinednamecomesclose
to satisfyingour needs.It allows for changenotifi-
cation(clientscanchooseto receivePropertyNotify
eventswhenany propertyonawindow is changed),
andfor per-screensettings.This is approach(com-
binedwith on-diskfiles) is the approachtaken by
Xrm andcomescloseto satisfyingourneeds.How-
ever, it hasa coupleof deficiencies.First, thereis
no coordinationof who is allowed to changethe
property. If therewere multiple applicationstry-
ing to updatetheproperty, thentheconfigsettings
wouldbehaveunpredictablyasfirst oneapplication
changedit than another. Anotherproblemis that
listeningfor PropertyNotifyeventsontherootwin-
dow is expensive: therearemany frequentlychang-
ing propertieson theroot window which areextra-
neousto the needsof a configurationmechanism.
We’ll seelater that theactualapproachthatXSET-
TINGS takes is similar to the approachof putting
the information on root window, but with a little
extra sophistication.Beforewe look at the details
of this, we’ll discussotherpossibleforms of com-
municationavailable.

In addition to properties,there are several other
communicationsmechanismavailable within X:
clientmessagesallow aclient to sendanotherclient
aneventcontaininga smallof data(20 bytes).The
selectionmechanismprovidesfor ”selections”that
work asnamedclipboardswhereoneclient ”owns”
the selectionand is responsiblefor supplyingthe
contentsto otherclients. This is typically usedfor
selectionssuchas the standardcut-and-pasteclip-
boardnamedCLIPBOARD, or the PRIMARY se-
lectionusedto hold thecurrentlyselectedtext.

Other mechanismsare possiblethat bypassthe X
server and communicatedirectly betweenclients.
Onesuchpossibility is ICE (inter-client exchange)

facility introducedin X11R6 [ICE]. This library
offers a somewhat standardizedway of settingup
communicationchannelsbetweenX clients,offer-
ing facilities suchasauthenticationandbyteorder
negotiation. It is usedasthebasisof theX Session
ManagementProtocol,andof KDE’s DCOPinter-
processcommunicationprotocol. However, dueto
variousfactors,suchas complicatedlibrary inter-
facesandthelack of facilitiesbeyonda basiccom-
municationchannel,it hasn’t gainedmuchgeneral
acceptance.

Another possible communicationmechanismis
CORBA [CORBA]. Unlike ICE, CORBA pro-
vides a completesolution,not just a communica-
tion channel.However, it is correspondinglymore
complex; the specificationruns to many hundreds
of pages,even without covering suchissuesasse-
curity or the location and activation; such issues
are describedin separatespecifications.While it
is possibleto identify a reasonablycompactsubset
of CORBA that makes for a reasonabledesktop-
communicationmechanism,there is still a hefty
amountof complexity to dealwith andasubstantial
library andsetof tools. It’s not really reasonableto
expect different applicationsand toolkits on X to
start using CORBA just for handlinga few tasks
like readingsettings.

While mechanismssuchasICE andCORBA may
benecessaryfor somecomplicatedsituations,they
really areoverkill for our situation,By sticking to
standardX mechanisms,we make it very easyfor
peopleto implementtheprotocolwith a minimum
of complexity and requirementsfor dependencies
beyondthecoreX library.

3 Architecture

The solution to both of the problemsmentioned
above with the root-window-propertyapproachis
somethingcalleda managerselection.As defined
in the ICCCM, a managerselectionis a selection
used,not asa way of providing thedatafor a clip-
board,but to provide a meansof negotiatingcon-
trol over a uniqueresource.SinceX needsto keep
track of the owner of a selectionto know which
client is responsiblefor providing the dataof the

clipboard,the selectioninterfacesprovide mecha-
nismsfor establishingandtrackingownershipof a
selectionin a race-conditionfree manner. We can
piggybackon top of this mechanismanduseown-
ershipof a selectionasa ”lock” for ownershipof
someother resources. For instance,the ICCCM
definesa selectionmanagerfor controlling which
client actsasthe window managerfor a particular
screen.For XSETTINGS,thewe usetheselection
XSETTINGS S[N], whereN is thescreennumber

of thescreen.(This allows for separatesettingsfor
eachscreen.)Theownerof the XSETTINGSS[N]
property is called the ”settings manager”for the
screen.

Thesolutionto theotherproblemmentionedabove
— having to selectfor propertynotify eventson
the root window — is provided by the fact that
the owner of the selectionis not actuallyan entire
client, but just a singlewindow. Sincewe storethe
settingsdataon the window owning the manager
settingfor XSETTINGS,clientsonly needto select
for changenotificationon that window, insteadof
on the root window wherethereare lots of extra-
neousproperties. A side benefitto this approach
is that if the settingsmanagerexits, its window is
destroyedandstaleconfigurationdatadoesn’t stick
around.

The settingsmanagerfills the role of taking data
from the desktop’s native configurationdatabase
and exposing it to all applications via XSET-
TINGS.If liveupdatesaredesired,thenthesettings
managerslistensfor changesin the configuration
databaseby whatever meansthat theconfiguration
databaseprovides,andthenupdatesthepropertyon
the settingsmanagerwindow; a very simple set-
tings managercould simply reada file of settings
in theuser’s homedirectory, setup thepropertyon
the settingsmanagerandthenwait arounduntil it
losestheXSETTINGSselection.

To briefly summarizethe conventionsfor the set-
tingsmanager:aclientthatwantsto provideXSET-
TINGS datafor a screenclaimsownershipof the
XSETTINGS S[N] selectionby calling XSetSe-

lectionOwner().If therewasalreadyan owner for
the selection,the client shouldask for confirma-
tion from theuserbeforetakingcontrolof theman-

agerselection. The window passedto XSetSelec-
tionOwner()is a speciallycreatedunmappedwin-
dow with the property data storedon it. When
the settingsmanagerlosesownershipof the selec-
tion it destroys the window so that clientscande-
tect that that thesettingsmanagerhaschangedand
call XGetSelectionOwner()to find the new selec-
tion managerwindow.

The settinginformationis storedasa singleprop-
erty (XSETTING SETTINGS) on the selection
managerwindow. The contentsof the propertyis
structuredasasequenceof binaryrecordsfor max-
imumsimplicity andparsingspeed.Anotherchoice
wouldhavebeentostorethedataasXML, however,
thiswouldslow down parsingconsiderablyandalso
requireall peoplelisteningonXSETTINGSto have
aXML parseravailable.

Thereareonly threesettingtypescurrently:strings,
integers,andcolors. While this may seemsome-
whatlimited,anythingcomplicatedcanbeachieved
by storingdatain string setting. If you wantedto
have a font as a XSETTINGS setting,you would
storethefont namein a stringsetting.A stringset-
ting could even hold XML dataif a complex type
wasneeded.In somesense,the integer andcolor
typesare just an efficiency optimizationfor some
of the morecommontypesof dataexpectedto be
storedin settings.

Settings are named with paths such as ”col-
ors/background”.This allows organizationof the
namespaceto prevent conflicts. (Settingsspecific
to a specific toolkit suchas GTK+ can be given
names such as GTK/colors/funky background.)
Thepathsaren’t significantfor datastorage— the
datais just storedasaflat list.

To getchangenotification,aclientselectsfor Prop-
ertyNotify eventson thesettingsmanagerwindow.
The easiestway for a client to do notification for
individual settingsto keeptrack of the old values
for all settings,andwhennotificationof changesis
received,comparethenew list with theold list, and
sendnotificationstoapplicationsfor all settingsthat
have beenaddedremovedor changed.

An alternatefacility for determiningwhenchange
notificationis neededfor particularsettingsis pro-

vided by a serialnumberfacility. The ideais that
thereis a serialfor theentiresetof settingswhich
is updatedwhenever any settingshaschanged,and
then for eachsetting, the serial numberwhen it
lastchangedis provided;to determinewhatsettings
have changed,theclient only needsto keeparound
the global serialnumberfrom the last time it read
the XSETTINGSproperty, andcheckto seeif the
serial numberfor individual propertiesare newer
than this. However the serial numberfacility has
not proved very useful in practice,andwill likely
beremovedin a laterversionof thespecification.

4 Status and Future

Sampleimplementationsof a XSETTINGS client
andsettingsmanagerareavailablefrom:

http://www.freedesktop.org/
standards/xsettings.html

Theseimplementationsare intendedto be univer-
sally usable,sothey aredistributedundertheunre-
strictiveX license,andarewrittento useonly ANSI
C andtheX library.

This implementationhas also been incorporated
into GTK+-2.0. In GTK+-2.0, XSETTINGS is
usedfor configuringa considerablearrayof items,
including,amongotherthings:

� Doubleclick time

� Cursorblink speed

� Distancethresholdinitiating drag-and-drop

� Widgettheme

XSETTINGSis usefulfor GTK+ not just because
it will allow GTK+ to getconfigurationinformation
from all desktopenvironmentssupportingXSET-
TINGS but also simply to enablegetting settings
frmo thedesktoptobegin with. GTK+ hasnonative
configurationdatabaseotherthana simplemecha-
nismfor readingsettingsfrmo a /.gtkrc file in the
user’s homedirectory that is intendedto be used

when GTK+ is usedwithout a desktopenviron-
ment.In orderto provideuserconfiguration,GTK+
needsto be connectedto a configurationdatabase
suchasGConfvia theXSETTINGSmechanism.A
simplesettingsmanagerthatexposessettingsfrom
GConf via XSETTINGS hasbeenwritten and is
availablefrom the GNOME CVS repository. This
tool will befleshedoutandGUI toolsfor configur-
ing settingswill bewritten aspartof theGNOME-
2.0desktoprelease.

The next stepin the developmentof XSETTINGS
is to standardizeonalist of standardsettingsnames
andtypesthatcanbesharedacrosstoolkits. While
the XSETTINGS mechanismprovides a frame-
work for sharinguserconfiguration,thepromiseof
sharedsettingscannotbe achieved until sucha set
of configkeys is agreedupon.

AlthoughXSETTINGSis not yetawidely adopted
standard,it doesprovide a goodexampleof some
of the issuesthat comeup when trying to create
a cross-desktopstandard. Someof the effective
strategiesthatcanbeappliedin thisareaare:

� Aim low. Thesimplera proposalis to imple-
ment,andthelessit effectsthelargerscalede-
signof systems

� Designto work with existingsystems.

� Write sample code to a lowest-common-
denominatordevelopmentenvironment(ANSI
C andXlib.)

� Discuss your proposal in appropriate fo-
rums. xdg-list@freedesktop.org (See
http://www.freedesktop.org/
about/involved.html) is a list dedi-
catedto discussingcross-desktopintegration
issuesfor X.

5 Acknowledgments

Thanksto Waldo Bastianand Mattias Ettrich for
reviewing and providing feedbackon the original
XSETTINGSproposal.

References

[CORBA] http://www.corba.org.

[EWMH] X Desktop Group Extended Win-
dow Manager Hints, http://www.
freedesktop.org/standards/
wm-spec/ (2000).

[ICE] Robert Scheiflerand JordanBrown. Inter-
client Exchange (ICE) Protocol, X Consor-
tium, (1994).

[ICCCM] David Rosenthaland StuartW. Marks,
Ed. Inter-client CommunicationConventions
Manual, X Consortium(1994).

[PENNINGTON] Havoc Pennington In-
troduction to the GConf Library,
http://developer.gnome.org/
feature/archive/gconf/ (2000).

[RFC2244] C. Newman and J.G. Meyers ACAP
– ApplicationConfiguration AccessProtocol,
RFC2244(1997).

[XDMD] John Lindal Drag-and-Drop Protocol
for the X Window System, http://www.
newplanetsoftware.com/xdnd/

[XRM] JamesGettysandRobertW. Scheifler. Xlib
–CLanguageX Interface, Chapter15.X Con-
sortium,(1996).

[XSETTINGS] Owen Taylor XSETTINGS -
cross toolkit configuration proposal,
http://www.freedesktop.org/
standards/xsettings.html (2001).

