
Writing Applications with GTK+Owen TaylorApril 28, 19981 IntroductionGraphical user interfaces have become almost universally familiar. However,it may be worth saying a few words about how graphical user interfaces workin Linux and X from the point of view of the programmer. The X server isresponsible for only the simplest operations of drawing graphics and text onthe screen and for keeping track of the user's mouse and keyboard actions. Pro-grams communicate with the server via the Xlib library. However, programmingapplications in straight Xlib would be a tremendous chore. Since Xlib providesonly basic drawing commands, each application would have to provide their owncode to user interface elements such as buttons, or menus. (Such user interfaceelemenets are called widgets).To avoid such a laborious job, and to provide consistancy between di�erentapplications, the normal practice is to use a toolkit - a library that builds ontop of Xlib and handles the details of the user interface. The traditional choicesfor such a toolkit have been two libraries built upon X Intrinsics (libXt) librarydistributed with X, the Athena Widgets, which are distributed with X, and Mo-tif1. However, Xt is complicated to learn and use, the Athena Widgets haven'tlooked stylish since 1985, and Motif, while somewhat more up to date, is large,slow, has an appearance disliked by many people, and, most importantly, is aproprietary product without freely available source code.For these reasons, and others much recent development has focused on toolk-its that build directly on Xlib. There are dozens of such toolkits available. Per-haps the most prominent are John Ousterhout's Tk toolkit, tightly integratedwith the Tcl language, and the Qt library2, by Troll Tech, which is written inC++.1Motif is a registered trademark of The Open Group2Qt is a trademark of Troll Tech AS 1

1.1 HistoryGTK+ was created as part of the GNU Image Manipulation Package (GIMP).Early revisions of the GIMP used Motif, but when a major revision was begun in1996, Peter Mattis decided that, because of its proprietary status, Motif was notsuitable, and began work a new toolkit, called the GIMP Toolkit (GTK). In early1997, additional object oriented features were added, including inheritance anda
exible signal system for callbacks, and the toolkit was renamed from GTK toGTK+. Because the original version was never released, GTK+ is often referredto simply as GTK, and, even when written as GTK+, is typically pronouncedjee-tee-kay, not jee-tee-kay plus.1.2 Why GTK+?GTK+ o�ers a number of advantages over other avaqilable toolkits. It is writtenentirely in C. Not only are high quality C compilers universally available, butthe C-only makes it very easy to integrate with existing systems as well.Interfaces for GTK+ exist for many di�erent languages. Well developedbindings exist for (in addition to C), C++, guile, Perl, and Objective C. Bindingsalso exist or are in development for Python, Java, Ei�el, Modula-3, O'Caml, andTOM. As has long been known by users of Tcl/Tk, GUI development is muchmore e�cient when done in a high-level \scripting" language. Although portsof Tk have been done to a number of languages other than Tcl, they have beenhobbled because Tcl is heavily integrated into the Tk core, so each port hasrequired producing a modi�ed version of Tk, or has required interfacing to Tkthrough Tcl. The object-oriented design, and straight-C approach of GTK+mean that all the above mentioned bindings use unmodi�ed versions of GTK+.GTK+ is licensed under the GNU Library General Public License (LGPL).his ensures the continued availability of the GTK+ source code, and modi�ca-tions to it, and means allows it can be used without charge in all applications.This contrasts sharply with Motif, for which the source code is not availablewithout paying large amounts of money, and Qt, which is free only for non-commercial use.As you might expect for a toolkit that originated as part of a graphics pro-gram, GTK+ has a very attractive default appearance. The user interface el-ements are crisply de�ned and well spaced. The colors, fonts and backgroundpixmaps of GTK widgets can be conveniently customized by the user via a con-�guration �le system. If that isn't enough, work is currently in progress to addThemeability to GTK+ _Themeability, best known from its implementation theEnlightenment window manager, will allow complete customization of the user2

interface without recompiling applications.GTK+ also provides transparently provides support for a number of X exten-sions. With at most trivial modi�cations, a GTK+ program will allow the inputof Chinese and Japanese text via the XIM extension, and use shared memory forimages via the XShm extension. A more unusual feature of GTK+ is support forthe XInput extension. Programs using the GTK+ can, again, with only minormodi�cations, take advantage of pressure and tilt information from a graphicstablet.1.3 Design PrinciplesThere are a number basic design decisions that distinguish GTK+ from othertoolkits. The most basic one was mentioned above. GTK+ is written in pure Cto allow the maximum portability,
exibility, and e�ciency.Another basic principle used in GTK+ is \Evenrything is a widget". Inmost toolkits, a button or menu item simply has a �xed text. In GTK+ buttonsand menuitems are simply Container widgets. The could hold a Label widget(to display a text string), a Pixmap widget (to display a picture), and Arrowwidget, a DrawingArea widget where the application draws its own graphics,and so forth.2 General Ideas2.1 StructureThe GTK+ package consists of three libraries. The �rst, libglib, providestwo things: system-independent replacements for non-portable routines, androutines for manipulation of generic data structures. The extensive use of thesedata structures in the rest of GTK+ and in GTK+ applications simpli�es thecode, and improves performance by allowing sophisticated data structures suchas hashes and caches to be conveniently used.The second library libgdk, the GIMP Drawing Kit, provides a wrapperaround the raw Xlib functions. This hides much of complications of X from therest of the code, and should make porting GTK+ to other windowing systemssomewhat easier. Finally, libgtk includes the code for the GTK+ object system,and for the widgets itself.
3

GtkObjectGtkDataGtkAdjustmentGtkTooltipsGtkWidgetGtkContainerGtkBinGtkAlignmentGtkEventBoxGtkFrameGtkAspectFrameGtkHandleBoxGtkItemGtkListItemGtkMenuItemGtkCheckMenuItemGtkRadioMenuItemGtkTreeItemGtkViewportGtkWindowGtkColorSelectionDialogGtkDialogGtkInputDialogGtkFileSelectionGtkBoxGtkButtonBoxGtkHButtonBoxGtkVButtonBoxGtkHBoxGtkComboGtkStatusbarGtkVBoxGtkColorSelectionGtkGammaCurveGtkButtonGtkOptionMenuGtkToggleButtonGtkCheckButtonGtkRadioButtonGtkCList

GtkFixedGtkListGtkMenuShellGtkMenuBarGtkMenuGtkNotebookGtkPanedGtkHPanedGtkVPanedGtkScrolledWindowGtkTableGtkToolbarGtkTreeGtkDrawingAreaGtkCurveGtkEditableGtkEntryGtkSpinButtonGtkTextGtkMiscGtkArrowGtkImageGtkLabelGtkTipsQueryGtkPixmapGtkPreviewGtkProgressBarGtkRangeGtkScaleGtkHScaleGtkVScaleGtkScrollbarGtkHScrollbarGtkVScrollbarGtkRulerGtkHRulerGtkVRulerGtkSeparatorGtkHSeparatorGtkVSeparatorFigure 1: The GTK+ class heirarchy4

GtkEditableClass

GtkEntryClassGtkEntry

GtkEditable

GtkWidget

GtkObject

klass

"changed":NULL

"show" : gtk_entry_show

"destroy" : gtk_entry_destroy

GtkObjectClass

GtkWidgetClass

Figure 2: Memory layout of GtkEntry and GtkEntryClass structures2.2 InheritanceDespite being written in C, GTK+ is fully object oriented. A \method" isinvoked on an object by calling a function that takes the object as its �rstparameter. For instance, to show a widget on the screen, one calls the function:void gtk_widget_show (GtkWidget *widget);As an another example, to set the text in an Entry widget one calls:void *gtk_entry_set_text (GtkEntry *entry, const gchar *text);A code fragment that uses hese functions looks like:GtkWidget *entry = gtk_entry_new ();gtk_entry_set_text (GTK_ENTRY (entry), "Edit Me");gtk_widget_show (entry);The interesting thing here to note is the use of the GTK_ENTRY macro. AGtkWidget * was returned by gtk_entry_new(), but gtk_entry_set_text()expects GtkEntry *. To get from one to the other, we use the GTK_ENTRY()macro. Actually, we could have written, just as well:5

gtk_entry_set_text ((GtkEntry *)entry, "Edit Me");When debugging checks in GTK+ are disabled, the GTK_ENTRY() macro justa convenient way to write the cast. When debugging is enabled, the macro alsodoes some checks to make sure the pointer we are converting into a GtkEntry *actually points to an Entry widget. So how can the same pointer point bothto a GtkWidget and a GtkEntry. Doesn't the object in memory have to to beeither one or the other?For the answer to that, see Figure 2. What is going on is that the wehave nested structures. Inside the GtkEntry structure is a GtkEditable struc-ture. Inside the GtkEditable structure is a GtkWidget structure, and inside theGtkWidget structure is a GtkObject structure. All of these structures begin atthe same place in memory, so the the same pointer can be used as a GtkEntry *,a GtkEditable *, a GtkWidget * or a GtkObject *.In this manner, GTK+ implements a heirarchy of widgets along with a fewnon-widget objects. (See Figure 1). At the base of the heirarchy is the GtkOb-ject type, which provides various functionality common to all Objects, such asmemory management.There is actual a second set of structures nested in the same Russian-dollfashion. This is illustrated by our other call. gtk_widget_show (entry). Asyou might imagine, di�erent things are involved in showing an Entry widgeton the screen, than in showing, say, a CheckButton. So how does the code ingtk_widget_show(), which has to handle both, know what to do? Informationabout such operations, is stored in a second structure nested in the same way, theClass Structure. There is a separate GtkEntry structure for each Entry widget,but only a single GtkEntryClass structure that all GtkEntry structures pointto. In this GtkEntryClass structure is, among other things, a pointer to thefunction gtk_entry_show() which actual shows the widget. After doing somegeneral setup, gtk_widget_show() calls this function which performs actionsspeci�c to showing an Entry widget.Actually, it doesn't call that function directly, but instead uses GTK+'ssignal mechanism. Which brings us to the next topic.2.3 SignalsOne of the most distinctive and
exible features of GTK+ is its signal system.Signals provide a mechanism for applications to control what happens when theuser does something, by providing a callback - code that GTK+ calls when theevent occurs. Callbacks in most C libraries are set up by simply by providinga function pointer - and this is essentially what you are doing when you call6

gtk_signal_connect, but signals o�er a number of additional bene�ts over asimple callback mechanism. To list a few:� Multiple callbacks can be attached to a single signal.� By using gtk_signal_connect or gtk_signal_connect_after, the usercallback can be run before or after the default handler.� Type information about the callback arguments is provided to languagebindings, so the arguments can be converted appropriately.� Applications can create their own signal types and attach them to existingobjects.Each type of occurrence has a separate signal type, identi�ed by a string.Using the example of the signal that is pressed when the user clicks on a button,adding a callback to a signal looks like:voidmy_callback (GtkWidget *widget, gpointer data){ g_print ("The button was pressed\n");}gtk_signal_connect (GTK_OBJECT (button), "clicked",GTK_SIGNAL_FUNC (callback), NULL);The last argument, NULL in this example, allows arbitrary data to be passedas the second argument of the callback.2.4 Geometry managementIn keeping with the general principle that everything is a widget, layout in GTK+ is done by using widgets the contain other widgets. All of these widgets inheritfrom the Container widget, and are known as containers. The most commonlyused containers for layout are the HBox and VBox, which are used to groupwidgets into a horizontal or vertical box, and the Table widget, which allows for
exible two dimensional layout. But there are 44 other types of Containers aswell. The container nature of many of these is less obvious - for instance, theButton widget, as mentioned above, is a container.7

2.5 Memory ManagementIn a typical C program, the programmer is completely responsible for freeingmemory that they have allocated. This works well if the program uses memorythan frees it in a predictable manner. But imagine the di�culties in �guringout when to free the memory of a GtkObject. A pointer to a widget may beused in many places internal to GTK+ and from application code. A complexapplication might allow scripting in a language such as Perl, and a pointercould be kept there as well. If the memory of the object is freed before all ofthese pointer are removed, they will be left pointing into empty space, and asegmentation fault would be the likely consequence.The problem of �guring out when there are no pointers to a piece of memoryleft is called, in general, garbage collection. (Because once all the pointers aregone, the object is useless - and hence \garbage" that needs to be removed)Many sophisticated schemes have been invented for doing this - most of whichrequire extensive support from the compiler, and sometimes from the operatingsystem.Because, GTK+ is meant to be useable in conjunction with many di�erentlanguages, and external systems, it would not be practical to implement a fullgarbage-collection system in GTK+. Instead, it uses a limited form of garbage-collection called reference counting. In reference counting, each object keepstrack of the number of of pointer to that object that exist. When this countgoes to zero, the object frees its memory.When one stores a pointer to an object, one calls the function:gtk_widget_ref(GtkObject *object)which increments the reference count. When one no longer needs the pointer,one calls:gtk_widget_unref(GtkObject *object)There is one notable danger with reference counting. If a cycle exists whereone object references another, and the second references the �rst, than neitherobject will ever have its reference count drop to zero, and they will never befreed. To reduce the likelyhood of this happening, GTK+ also includes a manualdestruction step.Manual destruction is a natural idea for a graphical user interface. Once anobject appears on the screen, the user will typically cause it to go away throughan explicit action, such as clicking a close button, or selecting `Quit' from a menu.In response to such an action, the program will call gtk_widget_destroy() onthe relevant widget. (For instance, on the window). This will cause all references8

that the widget holds inside of GTK+ to be released, the widget to be removedfrom the screen, and gtk_widget_quit() to be called on all the widgets children.Note that there is a distinction between destruction, the step mentioned aboveand actually freeing the object, which is called �nalization.Most commonly, only a single reference to a GTK+ widget exists, which isheld by the the container widget that holds them. (Their parent). Since this isremoved when a widget is destroyed, the widgets reference count then drops tozero, and it is �nalized when immediately after being destroyed.2.6 The Event LoopPrograms with graphical user interfaces are by nature event driven. That is,instead of performing some computations, then exiting immediately, they waitfor the user to do things, and then respond to the users actions. This is done bycallbacks. The most common form of callbacks in GTK+ programs are signals.However, there are several types of callback that can be set up independent ofwidgets as well:Timeouts are called at speci�edintervals. Idle functions are called when noevents or timeouts need to be processed. Input callbacks are called for eventson �le descriptors. For instance, you might use an input callback if you werewaiting for data to arrive on a socket.3 Writing a GTK+ applicationFigures 3{5 show a very short example of a GTK+ program, as implemented inC, Perl and guile. A window widget is created, a button is added to it, and acallback is set up so that when the button is clicked, \Hello World" is printedand the application quits.Writing a substant application in GTK+ follows much the same route | One�gures out how the application should look, and creates the appropriate wid-gets. Then one connects callbacks to the appropriate signals so the applicationactually does something.4 Tips, Traps, and TechniquesCompile GTK+ with --enable-debug When you are developing a GTK+program, you should use a copy of GTK+ con�gured with the --enable-debug
ag. This turns on runtime checks that will help catch your programming errorswhen they �rst occur, as well as allowing the use of some very handy debugging9

information that is available by setting the GTK_DEBUG environment variable.(See the �le docs/debugging.txt/ in the GTK+ distribution)Make sure one window has a \destroy" handler If all of the applicationswindows are closed, but the event loop keeps running, then from the user's pointof view, your application will appear to have hung, instead of quitting. If theuser is running your application from a menu, instead of from a shell, they maywell end up with 10-15 copies running at once.To avoid this, identify a main window for your application, and make surethere is a \destroy" handler for that window that quits the main loop when thewindow is destroyed.GtkWidget *window = gdk_window_new (GTK_WINDOW_TOPLEVEL);gtk_signal_connect (GTK_OBJECT (window), ``destroy'',GTK_SIGNAL_FUNC (gtk_main_quit, NULL);5 Future Directions for GTK+Although GTK+ as it currently exists is suitable for writing powerful and fullfeatured applications, work is currently beginning on a version 2 that will beeven better.Some of the things planned include, themeability, as mentioned above, moreextensive internationalization, including, most likely, a switch to Unicode for theinternal encoding, and the integration of the Imlib library for image loading andmanipulation into the GTK+ core.6 Further informationFor further information about GTK+ and links to the language bindings men-tioned above, visit http://www.gtk.org/. The author can be contacted atotaylor@gtk.org.
10

#include <gtk/gtk.h>voidbutton_clicked (GtkWidget *button, GtkWidget *window){ g_print ("Hello world\n");gtk_widget_destroy (window);}intmain (int argc, char **argv){ GtkWidget *window;GtkWidget *button;gtk_init (&argc, &argv);window = gtk_window_new (GTK_WINDOW_TOPLEVEL);gtk_signal_connect (GTK_OBJECT (window), "destroy",GTK_SIGNAL_FUNC (gtk_main_quit), NULL);button = gtk_button_new_with_label ("Click Me");gtk_container_add (GTK_CONTAINER (window), button);gtk_widget_show (button);gtk_signal_connect (GTK_OBJECT (button), "clicked",GTK_SIGNAL_FUNC (button_clicked), window);gtk_widget_show (window);gtk_main();return 0;} Figure 3: GTK+ `Hello World' in C
11

use Gtk;Gtk->init;my $window = new Gtk::Window 'toplevel';$window->signal_connect("destroy", \&Gtk::main_quit);my $button = new Gtk::Button "Click Me";$window->add($button);$button->show;$button->signal_connect("clicked", sub {print "Hello\n";$window->destroy;});$window->show;Gtk->main; Figure 4: GTK+ `Hello World' in Perl(use-modules (toolkits gtk))(let ((window (gtk-window-new 'toplevel))(button (gtk-button-new-with-label "Click Me")))(gtk-signal-connect window "destroy"(lambda () (gtk-main-quit)))(gtk-signal-connect button "clicked"(lambda ()(display "Hello World")(newline)(gtk-widget-destroy window)))(gtk-container-add window button)(gtk-widget-show-all window))(gtk-main) Figure 5: GTK+ `Hello World' in guile12

