Internationalizing the GTK+
User Interface Toolkit

Owen Taylor
Red Hat Software
March 23, 1999

1 Introduction

A graphical user interface toolkit is one of the core components of a modern
system. The toolkit is responsible for providing the interface between the raw
windowing system’s button presses and line drawing code and the application. It
provides facilities for displaying such common user interface elements as menus,
push buttons,and text entry fields.

Because of the critical position that a toolkit fills, sitting between the user
and the desktop, it also provides an essential role in internationalized and multi-
lingual applications. The toolkit typically handles the conversion of the raw
keystrokes from the user into the final text. For some languages, in particular
those of East Asia, this process can be quite involved, and may involve talking
to a external server, called an input method.

Once the text has been entered into the application, any internal manip-
ulations that the toolkit does on the text must also respect its international
nature. For instance, when the toolkit is handling cursor motion within a text
entry field, the motion must be by complete characters, even if the internal
representation of the data uses more than one byte per character.

The toolkit is also responsible for properly displaying text in the appropriate
font and otherwise respecting the conventions of the user’s language. This text
may come from user input, or from the application, but the toolkit may also
need to provide strings itself. That situation commonly arises when the toolkit
provides such high level widgets as a file selection or font selection dialog. Strings
such as “filename” or “font” that occur in these dialogs must be displayed in the
user’s native language. This process, called localization is the last component
of the toolkit’s responsibilities for internationalization.

GTK+, the GIMP Toolkit, has recently become one of the most widely
used open source toolkits for the windowing system. It is used in a number of

major projects such as the GIMP (GNU Image Manipulation Project) and the
GNOME desktop.

GTK+ began as part of the GNU Image Manipulation Program (GIMP)
project. In preparation for the 1.0 release of the GIMP, the authors of the
GIMP, Spencer Kimball and Peter Mattis decided to switch from using the
propietary Motif toolkit to a toolkit that would encourage contributions from
the free software community. Not finding anything suitable, Peter began work on
GTK+ in the Fall of 1996. A great deal of interest in GTK+ appeared, including
from people interested in using GTK+ in international settings. In late 1997,
a set of patches from Takashi Matsuda were added to enable internationalized
input into GTK+. After the 1.0 release of GTK+ this work continued and the
1.2 release that was made in February 1999 includes comprehensive support for
the X locale model. The current work in GTK+ is largely aimed at extending
the internationalization of GTK+ beyond the scripts of Asia and Europe, and
at providing the ability to display text in multiple scripts simultaneously. This

Application

|
libgtk

/ \
libgdk libglib
/ N\
Xlib Other X libraries

Figure 1: The components of GTK+

work will be described in the second part of this paper.

GTK+ consists of three component libraries (see Figure ?7?), libgtk, which
contains the widgets of GTK+, libgdk, which provides low level event handling
and drawing functions, and glib, a library of portability routines and abstract
data structures that makes programming in C convenient and efficient.

2 The current state of GTK+

2.1 Input

For handling internationalized input, GTK+ currently uses the X Input Method
Extension, or for short, XIM. XIM provides a framework for communicating
with input methods. These input methods either can be external or they can
live in a separate process. External input methods use a protocol defined by the

External Input Method

Context

Fina Text

Figure 2: The architecture of the X Input Method Extension

XIM. An internal input method is used for compose key handling for European
languages.

The architecture of XIM is shown in Figure ??. Each keystroke is first re-
trieved by the toolkit from the X libraries. The toolkit then calls XFilterEvent ()
which allows the input method to intercept keystrokes and process them inter-
nally. The final string is then returned to the library.

During input, feedback may need to be displayed to the user. For instance,
when a user is entering Japanese text, it first is entered as a string of phonetic
symbols (kana), the phonetic symbols are then converted into the final ideo-
graphic form in a separate step. XIM supports various ways of of displaying
feedback. (See Figure ?7). In the Root Window style, all feedback is shown
in a separate window. In the Off-the-spot the feedback is shown in a separate
portion of the applications window. The Over the spot style, pretends to display
the feedback in place, by putting an undecorated window on top of the location
where the user is entering the text. Finally, in the On-the-spot style, display is
handled by the application instead of the input method, and is actually drawn
in place.

Input methods are available for quite a few different languages. In addition
to the built-in Input Method for European languages mentioned above, XIM-
compliant input methods are available for Japanese, Korean and Chinese.

Root Window Off the Spot

Application Application

ZiHug ZHud

~.___ Previousinput

HAZ

Current Input Elzlgt:

Over the Spot On the Spot

Application Application

UL HARZ U HARZ

Figure 3: Possible input styles

2.2 Manipulation

3 Manipulating Strings - GTK+ 1.2

e Uses a locale-specific character set (e.g. JIS 0208-1983)
e External representation is multi-byte

e Wide characters used internally for complex manipulation

4 Difficulties with multi-byte

e Hard to work with multi-byte string in unknown encoding
e Only can rely on old ISO C mbstowcs, etc.

— Not reentrant

— Dependent on current locale
e Sometimes C library does not agree with X about multi-byte encoding.

— C library may have strange ideas

— X may be compiled with -DX_LOCALE

— GTK+ does all multibyte <-> widechar conversion by converting to
an X Text Property and back.

4.1 Output

Currently, output of internationalized text in GTK+ is done using the facilities
of X. Instead of using a font, the application uses a fontset which is a list of
fonts for different character sets.

A typical fontset might be something like:

—adobe-helvetica-bold-r-normal-—*-12-*-x—%-%—%igs08859-1
—*—%-bold—*—*——12—*—*—x—*—*-kscb601.1987-*

Which says to use Adobe Helvetica for the character set i808859-1 (Latin 1)
and to use whatever fonts are available for the character sets in ksc5601.1987
(the Korean national standard for character sets).

Note that the interpretation of a string is done according to the locale when
Xlib is initialized; if the locale is ja'JP, then X will expect the fontset to contain
Japanese fonts, while if the locale us kr'KR, then it should contain Korean fonts.
So displaying text in multiple different languages is difficult.

4.2 Localization

As mentioned above, the text in GTK+’s standard dialogs (for example the file,
font, and color selection dialogs) needs to be translated for the user’s native lan-
guage. To accomplish this, GTK+ uses the gettext () interface; this interface
was originally devoloped by Sun, and is available as part of a number of oper-
ating systems. The GNU implementation of gettext is also available separately
and can be installed on systems without a native implementation of gettext.

When GTK+ needs to display a string for a user, it calls the dgettext ()
function. For instance, to display “Cancel”, GTK+ calls:

dgettext ("gtk+", "Cancel")

This will return “Cancel” when the locale is set to “C” or “en’US”, but
“Annuler” when the locale is set to “fr'FR”. Because GTK+ uses dgettext()
which takes an additional domain parameter, it uses a separate message catalog
from the application. This means that applications can localize themselves
however they want: they can use gettext () without interference from GTK+,
or they can use a different system of localization.

5

Future Directions

In the future, GTK+ will be switching over from the system of international-
ization described above, where a different encoding is used for each locale

There are a couple of reasons for this change. Second, Unicode makes it

possible to extend the range of supported languages to languages (such as those
of Africa or Central Asia) that do not have long traditions of local standards.
Second, Unicode eases the load on the application developer, because they only
need to deal with a single encoding. Finally, Unicode is the emerging standard
for representation of multi-lingual text. It is being used in such systems as
Microsoft Windows NT, Java and Perl.

6

7

Unicode support
Bidirectional rendering (Arabic, Hebrew)

Complex-text languages (Hindi, other Indian languages) (After GTK+
1.4)

Multi-language support at same time.

Unicode

Makes things simpler for application writers
Good support for languages beyond Europe and CJK

Enables multi-lingual applications.

UTF-8

One multi-byte encoding isn’t bad

— Can determine if a byte starts a charcter, so can iterate backwards

— Efficient for size. (Covers all two-byte characters in no more than
three bytes)

— Size efficiency can mean fast if memory bandwidth is limiting factor.
Not limited to 16 bits.

Compatible with existing interfaces (gettext (), sprintf (), etc.)

8 Bidirectional Rendering

One complication that will be dealt with in future versions of GTK+ is bi-
directional rendering. In a number of languages, including Arabic and Hebrew,
the direction of righting is not right-to-left, as is it is for languages written with
the Roman script, but right-to-left. This, in itself, would not be a big problem
- you would just have to reverse the order of drawing all characters onto the
screen. However, normally text in these languages is a mix of those right-to-
left characters (the language itself) and left-to-right characters (numbers and
foreign words). So a somewhat complex algorithm is needed to take a string
stored in memory and figure out the correct ordering for displaying it on the
screen.

e Arabic, Hebrew mostly right-to-left
e But typically have embedded sequences of left-to-right text
e Use Unicode standard algorithm for determining directionality

e Selecting, cursor movement complicated

8.1 Widget Mirroring

It is not simply enough to reverse the order of the each string in the interface
— since a speaker of Hebrew or Arabic expects things to read from right to left,
the interface itself needs to be reversed. Labels, for instance, should appear to
the right of the entry field that they label, instead of to the left of the field.

Since GTK+ does layout with heirarchical containers, this is generally straight-
forward. When adding a series of widgets into, for instance, a GtkHBox. (A
widget that contains a horizontal sequence of other widgets), GTK+ merely
needs to add the widgets from right to left instead from left to right. There are
some cases that do, however, require intervention from the application.

Figure ?7? shows some of these cases. In (b), the “left”, “right”, and “center”
labels should not be reversed, because there positioning on the screen is physical,
not sequential. So there needs to be the ability for the application writer to flag
containers that should not be reversed.

In (c), reversing the back and forward labels is appropriate, but not only the
positions, but the pixmaps themselves need to be modified. For a speaker of a
right-to-left language, forward is not to the right, it is to the left.

9 Current questions

e Is it possible to only support the On-the-spot style of input?

(a)

Mame: | ‘ | ameld

(b)

Left « Center -« Right ‘ fipiA « 19iN82 & fiad &

(©)
<] JiY B B A <] <] A B
Back Up Forvard biesod gU A2e8 mewnod gu A2e8

Figure 4: (a) User interface reversal (b) User interface elements that should
not be reversed (c) Pixmaps that need to be reversed

e How do we do code conversion on legacy OS’s?
e How do we render “Better than X”?

— Integration with GnomeText (Raph Levien)

10 Acknowledgements
o Internationalization of GTK+
Takashi Matsuda Akira Higuchi

e Original Authors of GTK+
Peter Mattis Spencer Kimball Josh Macdonald

e The GTK+ Team

Shawn Amundson Jerome Bolliet Damon Chaplin
Tony Gale Jeff Garzik Lars Hamann
Raja Harinath Carsten Haitzler Tim Janik
Stefan Jeske Elliot Lee Raph Levien
Tan Main Frederico Mefia Paolo Molaro
Jay Painter Manish Singh

